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Consider a cellular automaton with state space {0,1}Z2
where the initial config-

uration ω0 is chosen according to a Bernoulli product measure, 1’s are stable,
and 0’s become 1’s if they are surrounded by at least three neighboring 1’s. In
this paper we show that the configuration ωn at time n converges exponentially
fast to a final configuration ω̄, and that the limiting measure corresponding to
ω̄ is in the universality class of Bernoulli (independent) percolation. More pre-
cisely, assuming the existence of the critical exponents β, η, ν and γ , and of
the continuum scaling limit of crossing probabilities for independent site per-
colation on the close-packed version of Z

2 (i.e. for independent ∗-percolation
on Z

2), we prove that the bootstrapped percolation model has the same scal-
ing limit and critical exponents. This type of bootstrap percolation can be seen
as a paradigm for a class of cellular automata whose evolution is given, at
each time step, by a monotonic and nonessential enhancement [Aizenman and
Grimmett, J. Stat. Phys. 63: 817–835 (1991); Grimmett, Percolation, 2nd Ed.
(Springer, Berlin, 1999)].

KEY WORDS: Bootstrap percolation; scaling limit; critical exponents;
universality.

1. INTRODUCTION AND MOTIVATIONS

Bootstrap percolation is a cellular automaton with state space {0,1}Zd
,

which evolves in discrete time according to the following rule: a given con-
figuration of 0’s and 1’s is updated by changing to 1 each 0 with at least l

neighboring 1’s and leaving the rest of the configuration unchanged. Here
l is a nonnegative integer no bigger than 2d, and the initial configuration
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is chosen according to a Bernoulli product measure with parameter p (the
initial density of 1’s).

It is known from the work of van Enter(17) and Schonmann(14) that
if l � d, then almost all initial configurations evolve toward the constant
configuration with 1’s at all sites. On the other hand, it is clear that when
l >d, the 1’s do not take over completely for almost every initial configu-
ration. For example, if l=2d, the only 0’s that become 1’s are those com-
pletely surrounded by 1’s. The configuration changes only once and the
final measure is in some sense very close to a product measure.

The case l = 2d − 1 is already much more interesting; it is studied
in ref. 7, where the limiting measure (whose existence is ensured by the
monotonicity of the dynamics) is shown to have exponentially decaying
correlations, and the density function to be analytic in [0,1] (for simplic-
ity, the authors restrict their attention to d = 2, but all arguments used
are immediately seen to hold qualitatively for any d �2). In this paper, we
consider the same model studied in ref. 7, with l=2d−1 and d=2.

The exponential decay of correlations proved in ref. 7 shows that
the bootstrap dynamics generates only short-range correlations between
different sites. It is an open question, in general, whether introducing
short-range correlations modifies the critical exponents and the continuum
scaling limit (see Section 1.1). Based on very general renormalization
group arguments, the answer to this question is expected to be negative
under a broad class of conditions (see, for example, ref. 6), but very few
rigorous results are available, especially below the upper critical dimen-
sion, where the values of the critical exponents are expected to be differ-
ent from those predicted by mean-field theory (there are, however, some
exceptions – see, e.g., refs. 2–4, and 12). The main goal of this paper is to
present a model for which this question can be answered rigorously.

Our first result, Theorem 1, states that the probability �(n) that the
origin changes state after time n decays exponentially in n. Following its
proof, we present a proof of the exponential decay of correlations, The-
orem 2, which is somewhat different than that of ref. 7. The purpose of
our proof is to show that the same mechanism is responsible for the expo-
nential decay of correlations and the exponential convergence to the final
configuration (Theorem 1).

The mechanism we are referring to has to do with the nature of the
bootstrap dynamics (which only removes “dangling ends” from clusters of
0’s, starting from the tip) combined with the fact that large “tree-like”
clusters are “unlikely” in Bernoulli percolation. These two observations
are sufficient to prove the results mentioned above, and also imply that
the bootstrap dynamics only removes relatively small pieces of clusters
of 0’s, leaving unchanged the large pieces that are relevant in the scaling
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limit. This is the reason why the bootstrapped measure has the same crit-
ical exponents and scaling limit as independent percolation. In this (very
special) case, therefore, the reason for the “universal” behavior (see Sec-
tion 1.1) of the bootstrap model is quite clear, without having to resort to
more general (non-rigorous) renormalization group arguments.

The main results are presented in Section 3, and the proofs given
in Section 4. The proofs are based on ideas developed in refs. 2 and 3,
and the main tool is the natural coupling between independent and boot-
strap percolation provided by the bootstrap dynamics itself, which allows
to draw conclusions regarding the bootstrap model by estimating the prob-
ability of events under the initial product measure. In particular, the cou-
pling allows to compare bootstrap and Bernoulli percolation and show
that they do not differ “macroscopically.”

Besides being interesting in its own right, the bootstrap dynamics con-
sidered in this paper can also be seen as a particular example of a spe-
cial class of cellular automata on various lattices whose evolution is given,
at each time step, by a monotonic and nonessential enhancement of finite
range (see refs. 1 and 10 for the relevant definitions). Such cellular auto-
mata would be called subcritical in the language of ref. 9 (although they
do not represent all subcritical cellular automata).

In order to extend the results of the present paper to the whole class
of cellular automata specified above, one needs first of all to find candi-
dates for the protected sites of Definition 2.1. The existence of suitable
candidates for that role is not obvious in that generality, but can be proved
using results obtained in a paper in preparation by the author. Once this
is done, the proofs of the main theorems would proceed in much the same
way as in this paper.

1.1. Universality

Our main motivation for studying the type of questions addressed
here (see also refs. 2–4) is related to the idea of universality, according to
which most statistical-mechanical systems fall into universality classes such
that systems belonging to the same class have the same critical exponents
(the exponents describing the nature of the divergence of certain quanti-
ties or their derivatives near or at the critical point, where a second order
phase transition occurs).

A closely related notion of universality has to do with the continuum
scaling limit, a limit in which the microscopic scale of the system (e.g.,
the lattice spacing for systems defined on a lattice) is sent to zero, while
focus is kept on features manifested on a macroscopic scale. Such a limit
is only meaningful at the critical point, where the correlation length (i.e.,
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the “natural length scale” of the system) is supposed to diverge. It seems
that universality in terms of the scaling limit is a stronger notion than
that in terms of critical exponents. In ref. 16, some knowledge of the scal-
ing limit is used to determine critical exponents in the case of two-dimen-
sional independent site percolation on the triangular lattice, but there is
no general result in that direction.

The concept of universality and the existence of universality classes
arise naturally in the theory of critical phenomena based on the renor-
malization group, and are backed by strong theoretical and experimental
evidence. Below the upper critical dimension, however, only few rigorous
results are available.

2. DEFINITION OF THE MODEL AND PRELIMINARY RESULTS

Consider a bootstrap percolation model on Z
2 with initial configura-

tion ω={ω(x)}
x∈Z2 ∈{0,1}Z2

chosen according to a product Pp=�x∈Z2 νx

of Bernoulli measures {νx}x∈Z2 with parameter p (i.e., νx [ω(x)= 1]=p=
1 − νx [ω(x) = 0]); Ep will denote expectation with respect to Pp. The
evolution is given by the following rules:

• updates are performed at discrete times n=1,2, . . .

• 1’s are stable,

• at the next update, a 0 becomes 1 if it has at least three neighbor-
ing 1’s.

Given an initial configuration ω, the bootstrapped configuration is
denoted by ω̄ and the limiting distribution by P̄p. We will call the sites
of Z

2 open if they are assigned value 1 and closed if they are assigned
value 0. Given a subset D of Z

2, we denote |D| its cardinality and by ωD

the configuration ω restricted to D. A subset D ∈Z
2 is called a plaquette

if it is composed of four sites which are the vertices of a square of side
length 1.

We denote by pc the critical value of independent site percolation on
Z

2 and by p∗c = 1−pc the critical value of independent ∗-percolation on
the same lattice, which corresponds to site percolation on Z

2
cp, the close-

packed version of Z
2 (obtained by adding the diagonals to each face of

Z
2). We call Z

2-path (resp. ∗-path) an ordered sequence (x0, . . . , xk) of sites
of Z

2 such that xi−1 and xi are neighbors in Z
2 (resp. in Z

2
cp) for i =

1, . . . , k and xi �=xj for i �= j . A Z
2-loop (resp. ∗-loop) is a Z

2-path (resp.,
∗-path) that ends at a Z

2-neighbor (resp., ∗-neighbor) of the starting site.
A path or a loop will be called closed or open if all its sites are closed
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or open, respectively. We call length of a path or loop the number of sites
in it.

Definition 2.1. A closed site x ∈ Z
2 is called stable if and only if

ω̄(x)=0. A site is said to be protected if it is closed and is part of a group
of four closed sites forming a plaquette.

Clearly, a protected site is stable, together with the other three sites that
complete the plaquette of Definition 2.1, since each one of them has (at
least) two closed Z

2-neighbors.
The following are two elementary but useful lemmas.

Lemma 2.1. If x and y are stable closed sites and ω contains a
closed Z

2-path π joining x and y, then all the sites in π are stable. Closed
Z

2-loops are also stable.

Proof. For the first claim, it is enough to observe that each site in π

other than x or y has at least two closed Z
2-neighbors in ω. In a Z

2-loop,
every site has at least two closed Z

2-neighbors.

For (x, x′) an ordered pair of neighbors in Z
2, we define the partial

cluster C(x,x′) to be the set of sites y∈Z
2 such that there is a Z

2-path (x0=
x′, x1, . . . , xk=y), with x1 �=x, whose sites are all open or all closed.

Lemma 2.2. A closed Z
2-path (y0, . . . , yk) in ω is stable (i.e., all its

sites are stable) if C(y1,y0) and C(yk−1,yk) both contain protected sites.

Proof. The path (y0, . . . , yk) in ω is stable because there exists a
(generally longer) closed path that starts and ends at stable sites and con-
tains (y0, . . . , yk) as a subpath. Since the starting and ending sites of such
a path are stable, all the other sites of the path, including y0, . . . , yk, are
also stable by an application of Lemma 2.1.

We will denote by ωn the percolation configuration at time n, i.e.,
after n updates of the initial configuration. With this notation we have
ω0=ω (the initial configuration) and ω∞= ω̄ (the final configuration). Our
first result concerns the speed of convergence of ωn to ω̄.

Theorem 1. Let �(n) be the probability that the origin changes
state after time n. Then, for each p ∈ [0,1] there exists c0 > 0 such that
�(n)� exp (−c0 n).

Proof. Let o denote the origin of Z
2. If ω0(o) = 1, the origin

never changes state, therefore we will assume, without loss of general-
ity, that ω0(o) = 0 and also that 0 < p < 1. To analyze when the ori-
gin becomes 1, we consider its cluster Co at time 0. Let x1, x2, x3, x4
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be the four Z
2-neighbors of the origin in some deterministic order. For

xi, i=1,2,3,4, we define the branch Ci to be the partial cluster C(o,xi ). If
ω0(xi)=1, we say that Ci is empty.

Our first observation is that if the branches Ci, i= 1,2,3,4, are not
distinct, the origin belongs to a Z

2-loop and is stable by Lemma 2.1. We
also notice that, for the origin to become 1, no more than one branch
Ci can have a stable site, otherwise the origin would again be stable by
Lemma 2.1. We will then assume that the branches Ci, i = 1,2,3,4, are
distinct, and that at most one of them contains a stable site. Notice that
the branches that do not contain stable sites have a tree-like structure
(they do not contain Z

2-loops).
Consider first the case in which exactly one branch contains a stable

site. The origin will then become 1 at some time n equal to one plus the
length of a longest self-avoiding Z

2-path contained in one of the remain-
ing branches. If no branch contains a stable site, let Cj be a branch con-
taining a longest Z

2-path and π be a longest Z
2-path not contained in Cj .

Then the origin will become 1 at some time n equal to one plus the length
of π .

The discussion above shows that a necessary condition for the origin
to change state after time n is that at least one of the four branches Ci

contains a path of length at least n and no stable site. Since a protected
site is stable, to complete the proof, it suffices to show that there are α>0
and K <∞ such that

Pp(|Ci |�n and Ci contains no protected site)�K e−αn. (1)

To prove (1), we partition Z
2 into disjoint plaquettes and denote by S the

collection of these plaquettes. We do an algorithmic construction of Ci

(as in, e.g., ref. 8), where the order of checking the state of sites is such
that when the first site in a square from S is checked and found to be
closed, then the other three sites in that plaquette are checked next. Then
standard arguments show that the probability in (1) is bounded above by
K [1− (1−p)4](n/4).

Remark 2.1. We note that one can improve Theorem 1, namely
prove exponential convergence uniformly in p∈ [0,1] (i.e., it is possible to
get a constant c0 > 0 independent of p). This is done by using the proof
given above for values of p smaller than some p0 >p∗c , together with the
fact that for p � p0 the size of the closed cluster of the origin at time 0
has an exponential tail.(10) (We have chosen to give the argument in the
proof simply because it has the advantage of being valid for all values
of p.)
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Using arguments analogous to those in the proof of Theorem 1, one
can get exponential decay of correlations for P̄p, which was proved, in a
somewhat different way, in ref. 7. This result is important in the context
of the present paper because it suggests (see, for example, ref. 6) that P̄p

is in the universality class of independent percolation, as we will show in
the next section. We include here a proof of the result (see ref. 7 for the
original proof) in order to show how the same mechanism is responsible
for the exponential decay of correlations of the limiting measure and the
exponential convergence to the final configuration (Theorem 1). As it will
be clear from the proofs of the main results, that same mechanism is also
responsible for the fact that P̄p is in the universality class of independent
percolation. Such mechanism explains, in this particular case, the model’s
“universal” behavior and its relation with the exponential decay of corre-
lations.

For x ∈Z
2, let d(o, x) be one plus the number of sites between o and

x along a shortest Z
2-path from o to x, and let Bx(r)={y∈Z

2 :d(y, x)<r}.

Theorem 2. (ref. 7). P̄p has exponentially decaying correlations

|Ep[ω̄(o)ω̄(x)]−Ep[ω̄(o)]Ep[ω̄(x)]|�R exp [−c′0 d(o, x)], (2)

where R <∞ and c′0 >0.

Proof. Denote by Ax(n) the event that ω̄(x) is determined only by
the configuration ωBx(n) inside Bx(n), and by Ac

x(n) its complement. The
proof rests on the observation that if d(o, x) > 2n, then conditioned on
Ao(n) and Ax(n), the random variables ω̄(o) and ω̄(x) are independent.

Before proceeding with the proof, we notice that a necessary condi-
tion for Ac

o(n) to occur is that the origin be closed at time 0 and that there
be at least one branch Ci of the cluster of the origin at time 0 that reaches
the boundary of Bo(n) and has no stable site inside Bo(n). This event is
analogous to the one considered at the end of the proof of Theorem 1.
Then, arguments analogous to those used there to get (1) give the bound

Pp[Ac
o(n)]� exp (−α′ n) (3)

for some α′>0.
Take N such that Pp[Ac

o(N)] < 1/2 and consider the set of sites
{x ∈ Z

2 : d(o, x) � 3N} = Z
2 \ B(3N). For a site in Z

2 \ B(3N), we take
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n=�d(o, x)/3� and write, thanks to the observation above,

Ep[ω̄(o) ω̄(x)] = Ep[ω̄(o) ω̄(x) |Ao(n)∩Ax(n)] {1−Pp[Ac
o(n)]}2

+Ep[ω̄(o) ω̄(x) |Ac
o(n)∪Ac

x(n)] {2−Pp[Ac
o(n)]}Pp[Ac

o(n)], (4)

= Ep[ω̄(o) |Ao(n)∩Ax(n)]Ep[ω̄(x) |Ao(n)∩Ax(n)] {1−Pp[Ac
o(n)]}2

+Ep[ω̄(o) ω̄(x) |Ac
o(n)∪Ac

o(n)] {2−Pp[Ac
o(n)]}Pp[Ac

o(n)], (5)

where we have used

Pp[Ao(n)∩Ax(n)]=Pp[Ao(n)]Pp[Ax(n)]={1−Pp[Ac
o(n)]}2 (6)

and

Pp[Ac
o(n)∪Ac

x(n)]=1−Pp[Ao(n)∩Ax(n)]={2−Pp[Ac
o(n)]}Pp[Ac

o(n)], (7)

which follow from the observation that Ao(n) and Ax(n) are independent
events because d(o, x)>2n.

We now write

Ep[ω̄(o) |Ao(n)∩Ax(n)]

= Ep[ω̄(o)]−Ep[ω̄(o) |Ac
o(n)∪Ac

x(n)] {2−Pp[Ac
o(n)]}Pp[Ac

o(n)]

{1−Pp[Ac
o(n)]}2 (8)

and the same for Ep[ω̄(x) |Ao(n)∩Ax(n)], and plug the two expressions
in (5) to get

Ep[ω̄(o)ω̄(x)] = 1
{1−Pp[Ac

o(n)]}2 ×Ep[ω̄(o)]Ep[ω̄(x)]

+R1 Pp[Ac
o(n)]+R2 Pp[Ac

o(n)]2 (9)

for some constants R1 and R2. From (3) and (9), we immediately see that

|Ep(ω̄(0) ω̄(x))−Ep(ω̄(o))Ep(ω̄(x))|�R Pp[Ac
o(n)]�R e−c n (10)

for some R <∞ and c>0.
For the sites in Z

2 \B(3N), the proof is concluded by taking c′0=c/3.
For the sites in B(3N), we just have to choose a constant R large enough
so that R exp (−3Nc′0)�1.
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Remark 2.2. We note that one can get exponential decay of correla-
tions uniformly in p∈ [0,1] (as in ref. 7) using the fact that for p>p∗c the
size of the closed cluster of the origin at time 0 has an exponential tail(10)

(see Remark 2.1).

We conclude this section with Proposition 2.1, which identifies the
critical density of our bootstrap percolation model on Z

2
cp with p∗c , show-

ing that the bootstrapping rule employed here does not shift the critical
point. This motivates the next section, where we analyze the continuum
scaling limit of crossing probabilities and some critical exponents of the
bootstrapped model on Z

2
cp when the initial density of 1’s is p∗c .

Proposition 2.1. The following results hold for ω̄:

1.(i) Closed sites do not percolate if p >p∗c and percolate if p <p∗c .

(ii) If p=p∗c , closed sites do not percolate and the mean cluster size
for the closed component is infinite.

2.(i) Open sites do not ∗-percolate if p<p∗c and ∗-percolate if p>p∗c .

(ii) If p= p∗c , open sites do not ∗-percolate and the mean ∗-cluster
size for the open component is infinite.

Proof. Let us begin with the proofs of 1.(i) and 2.(i), which are
elementary. If p > p∗c , closed sites do not percolate in ω, that is before
bootstrapping the open sites, and therefore cannot possibly percolate in
ω̄, after bootstrapping the open sites. If p < p∗c , on the contrary, closed
sites do percolate in ω, and since any doubly-infinite closed Z

2-path (i.e., a
closed Z

2-path that can be split in two disjoint infinite paths) contained in
ω is stable and therefore it is also contained in ω̄, this implies that closed
sites percolate in ω̄ and concludes the proof of 1.(i).

To prove 2.(i), it suffices to notice that for p < p∗c , closed sites per-
colate in ω and the origin is surrounded by infinitely many Z

2-loops of
closed sites. Such closed loops are stable and therefore still exist in ω̄ and
prevent open sites from ∗-percolating. On the other hand, if p >p∗c open
sites ∗-percolate already in ω, which concludes the proof of 2.(i).

1.(ii) and 2.(ii) can be proved together using a theorem of Russo.(13)

At p=p∗c , in ω the origin is surrounded by infinitely many Z
2-loops of

closed sites and infinitely many ∗-loops of open sites. Both types of loops
are stable and therefore in ω̄ there is no percolation of closed sites, nor
∗-percolation of open sites. By an application of a theorem of Russo,(13)

this implies that both the mean cluster size of the closed component and
the mean ∗-cluster size of the open component diverge.
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3. MAIN RESULTS

In this section, we present the main results of this paper; the proofs
will be given in Section 4. The results presented in this section hold for
all the measures that are intermediate between the initial measure Pp and
the limiting one P̄p. These form a one parameter family {Pp,n}n∈N of mea-
sures, parametrized by time n= 1,2,3, . . . , and are increasingly different
from Pp as n becomes larger.

3.1. The Continuum Scaling Limit of Crossing Probabilities

We take a “mesh” δ and consider the “scaling limit” of crossing prob-
abilities for the percolation model ω̄ on δZ

2 as δ→0, focusing for simplic-
ity on the probability of an open ∗-crossing of a rectangle aligned with the
coordinate axes. A similar approach would work for any domain with a
“regular” boundary, but it would imply dealing with more complex defor-
mations of the boundary than that needed for proving the result for a rect-
angle.

Consider a finite rectangle R=R(b, h)≡ (−b/2, b/2)× (−h/2, h/2)⊂
R

2 centered at the origin of Z
2, with sides of lengths b and h and aspect

ratio ρ= b/h. We say that there is an open vertical ∗-crossing of R in ω

(resp., ω̄) if R∩δZ
2 contains a ∗-path of open sites from ω (resp., ω̄) join-

ing the top and bottom sides of the rectangle R, and call φ∗δ (b, h;n) the
probability of such an open crossing at time n.

More precisely, there is a vertical open ∗-crossing at time n if there
is a ∗-path (x0, x1, . . . , xm, xm+1) in Z

2 such that ωn(xj ) = 1 for all j ,
δx0, δx1, . . . , δxm, δxm+1 are all in R, and the line segments δx0, δx1 and
δxm, δxm+1 touch, respectively, the top side [−b/2, b/2] × {h/2} and the
bottom side [−b/2, b/2]×{−h/2} of R.

It is believed that the scaling limit of crossing probabilities for inde-
pendent percolation exists and is given by Cardy’s formula (see ref. 5 and
6); this has however been rigorously proved only for critical site percola-
tion on the triangular lattice.(15) We will assume that limδ→0 φ∗δ (b, h;0)=
F(ρ), where F is a continuous function of its argument.

Theorem 3. Suppose that the scaling limit of the crossing probabil-
ity of a rectangle R exists for independent critical site percolation on Z

2
cp

and is given by a continuous function F of ρ. Then, the corresponding
crossing probability in the bootstrapped model ω̄ with p=p∗c has the same
scaling limit.
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3.2. Critical Exponents

We will consider four percolation critical exponents, namely the expo-
nents β (related to the percolation probability), ν (related to the corre-
lation length), η (related to the connectivity function) and γ (related to
the mean cluster size). The existence of these exponents has been recently
proved,(11,16) and their predicted values confirmed rigorously, for the case
of independent site percolation on the triangular lattice. Such exponents
are believed to be universal for independent percolation in the sense that
their value should depend only on the number of dimensions and not on
the structure of the lattice or on the nature of the percolation model (e.g.,
whether it is site or bond percolation); that type of universality has not
yet been proved.

Consider an independent percolation model with distribution Pp on
a two-dimensional lattice L such that 0<pc <1. Let Co be the open clus-
ter containing the origin and |Co| its cardinality, then θ(p)=Pp(|Co|=∞)

is the percolation probability. Arguments from theoretical physics suggest
that θ(p) behaves roughly like (p−pc)

β as p approaches pc from above.
It is also believed that the connectivity function

τp(x)=Pp(the origin and x belong to the same cluster) (11)

behaves, for the Euclidean length ||x|| large, like ||x||−η if p=pc, and like
exp (−||x||/ξ(p)) if 0 <p <pc, for some ξ(p) satisfying ξ(p)→∞ as p ↑
pc. The correlation length ξ(p) is defined by

ξ(p)−1= lim
||x||→∞

{
− 1
||x|| log τp(x)

}
. (12)

ξ(p) is supposed to behave like (pc−p)−ν as p↑pc. The mean cluster size
χ(p)=Ep|Co| is also believed to diverge with a power law behavior (pc−
p)−γ as p↑pc.

It is not clear how strong one may expect such asymptotic relations
to be (for more details about critical exponents and scaling theory in per-
colation, see ref. 10 and references therein); for this reason the logarithmic
relation is usually employed. This means that the previous conjectures are
usually stated in the following form:

lim
p↓pc

log θ(p)

log(p−pc)
=β, (13)
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lim
||x||→∞

log τpc (x)

log ||x|| =−η, (14)

lim
p↑pc

log ξ(p)

log(pc−p)
=−ν, (15)

lim
p↑pc

log χ(p)

log(pc−p)
=−γ. (16)

In the rest of the paper, θ(p), τp(x), ξ(p) and χ(p) will indicate the
percolation probability, connectivity function, correlation length and mean
cluster size for independent site percolation on Z

2
cp. For n ∈ [1,∞], let

θ(p,n), τp,n(x), ξ(p,n) and χ(p,n) be, respectively, the percolation prob-
ability, connectivity function, correlation length and mean cluster size on
Z

2
cp for the bootstrapped model at time n, with n=∞ corresponding to

the fully bootstrapped configuration ω̄. The main theorem of this section
is the following.

Theorem 4. There exist constants 0 < c1, c2 <∞ such that, ∀n ∈
[1,∞],

θ(p)� θ(p,n)� c1 θ(p) for p∈ (p∗c ,1], (17)

τp(x)� τp,n(x)�p−c2 τp(x) for p∈ (0, p∗c ], (18)

ξ(p,n)= ξ(p) for p∈ (0, p∗c ]. (19)

The next corollary is an immediate consequence of Theorem 4 and its
main application; it says that the bootstrapped percolation model (in fact,
all models corresponding to n enhancements by bootstrapping, with n ∈
[1,∞]) has the same critical exponents β, η, ν and γ as ordinary indepen-
dent percolation.

Corollary 3.1. Suppose that the critical exponents β, η, ν and γ

exist for independent site percolation on Z
2
cp, then they also exist for the

bootstrapped model and have for the latter the same numerical values as
for the original model.

4. PROOFS OF THE MAIN RESULTS

In this section, we prove the main results of this paper, presented in
Section 3.
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4.1. Crossing Probabilities – Proof of Theorem 3

To prove the theorem, we need to compare the probability of an open
vertical ∗-crossing of R in ω̄ with the probability of the same event in ω.
In order to do that, we will use the natural coupling that exists between
ω and ω̄ via bootstrapping. First of all notice that, if an open vertical
∗-crossing of R is present in ω, it is also present in ωn, for all n, since
open sites are stable. Therefore,

lim
δ→0

φ∗δ (b, h;n)� lim
δ→0

φ∗δ (b, h;0)=F(ρ). (20)

Equation (20) holds for all values of n, including n=∞, so if we call
φ̄∗δ (b, h) the probability of an open vertical ∗-crossing of R from ω̄, we
can write

lim
δ→0

φ̄∗δ (b, h)� lim
δ→0

φ∗δ (b, h;0)=F(ρ). (21)

On the other hand, if an open vertical ∗-crossing of R is not pres-
ent in ω, this implies the existence of a closed horizontal Z

2-crossing of
R. For δ small such a crossing must involve many sites, and the proba-
bility of finding “near” its endpoints two sites x and y, belonging to the
crossing, attached through closed Z

2-paths to two stable closed sites x′
and y′ should be close to one. If such stable sites are found, Lemma 2.1
assures that at least the portion of the closed horizontal crossing from
x to y is still present in ω̄. This suggests that, conditioned on having
in ω a closed horizontal Z

2-crossing of a slightly bigger (in the hori-
zontal direction) rectangle, with high probability, in ω̄ there will be a
closed horizontal Z

2-crossing of R blocking any open vertical ∗-cross-
ing. It is then enough to prove that this probability goes to one as
δ→0.

We will now make this more precise, adapting the proof of The-
orem 1 of ref. 3. Consider the rectangle R′ = R(b′, h) with b′ slightly
larger than b and aspect ratio ρ′ =b′/h. It follows from our assumptions
that

φ∗(b′, h;0)≡ lim
δ→0

φ∗δ (b′, h;0)=F(ρ′) (22)

and

lim
b′→b

φ∗(b′, h;0)= lim
ρ′→ρ

F (ρ′)=F(ρ). (23)
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If we now call φδ(b
′, h+ δ;0) the probability of a closed horizontal

Z
2-crossing of R(b′, h + δ) from ω, and φδ(b, h + δ;n) that of a closed

horizontal Z
2-crossing of R(b, h+δ) from ωn, the observation that a closed

Z
2-crossing can only be “eaten” from its endpoints yields

φδ(b, h+ δ;n)�φδ(b
′, h+ δ;0), (24)

as long as b′>b, and n is not too large (depending on b′−b and δ).
Since a closed horizontal Z

2-crossing of R(b, h+ δ) blocks any open
vertical ∗-crossing of R(b, h) and vice versa, (24) yields

φ∗δ (b, h;n)= [1−φδ(b, h+ δ;n)]� [1−φδ(b
′, h+ δ;0)]=φ∗δ (b′, h;0). (25)

Keeping n fixed, we can let first δ go to zero and then b′ go to b, thus
obtaining from (25) a bound that, combined with (20), gives the desired
result, at least for values of n that are not too large.

To complete the proof, we will extend (24) to all values of n, includ-
ing n =∞, at the cost of a correction that goes to zero as δ→ 0. In
order to do this, we will use Lemma 2.2 to show that if there is a closed
horizontal crossing by (y0, . . . , yk) of R(b′, h + δ) at time 0, with high
probability it does not “shrink” too much due to the effect of the dynam-
ics, so that at all later times, including n=∞, there is a closed horizon-
tal crossing of R(b, h+ δ) by (yk1 , . . . , yk2). This is achieved by looking
at the partial clusters containing the portions of (y0, . . . , yk) contained in
R(b′, h+ δ)\R(b, h+ δ) and searching for protected sites.

Noting that each of the partial paths (y0, . . . , yk1) and (yk2 , . . . , yk)

contains of the order of (b′ − b)/δ sites, we see that Lemma 2.2 implies
that it suffices to show that there exist α >0 and K <∞ such that for any
deterministic (x, x′),

Pp∗c (|C(x,x′)|�� and C(x,x′) contains no protected site)�K e−α�. (26)

To prove (26), we proceed as in the proof of Theorem 1, that is, we partition
Z

2 into disjoint plaquettes and denote by S the collection of these plaquettes.
We then do an algorithmic construction of C(x,x′) where the order of checking
the state of sites is such that when the first site in a plaquette from S is checked
and found to be closed, then the other three sites in that plaquette are checked
next. Again, standard arguments show that the probability in (26) is bounded
above by K [1− (1−p∗c )4](�/4).

Remark 4.1. As already remarked, the proof of Theorem 3 shows
that the result is valid for all the intermediate measures Pp∗c ,n.
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4.2. Critical exponents

4.2.1. Proof of Theorem 4

For two subsets C and D of Z
2, we denote by {C←→D} the event

that some site in C is connected to some site in D by an open ∗-path, and
by {C←→∞} the event that some site in C belongs to an infinite open
∗-path.

The lower bound for θ(p,n) is obvious. For the upper bound, we let
N ∗x be the set of ∗-neighbors of x and rely on the following observation. If
no site in N ∗o belongs to an infinite open ∗-path at time 0, then the origin
must be surrounded by a closed Z

2-loop λ. It then follows, by Lemma 2.1,
that each site in λ is stable. Therefore, the origin will not be connected to
infinity by an open ∗-path at any later time. Thus,

θ(p,n)�Pp(N ∗o ←→∞). (27)

Since {o←→∞} can be written as {ω(o) = 1} ∩ {N ∗o ←→∞}, and
{ω(o)=1} and {N ∗o ←→∞} are independent at time 0,

Pp(o←→∞)=p Pp(N ∗o ←→∞). (28)

From this we get

θ(p,n)�p−1 θ(p)� 1
p∗c

θ(p), (29)

as required.
The lower bound for τp,n(x) is again obvious. To obtain the upper

bound, we first note that for ||x|| bounded, the inequality is trivial by
choosing c2 big enough so that the right-hand side of (18) exceeds 1. Next,
for ‖x‖ large enough, we notice that, unless {N ∗o ←→N ∗x } at time 0, the
origin and x must be separated by a closed Z

2-loop surrounding one of
them or by a doubly-infinite closed Z

2-path, and therefore it cannot be the
case that {0←→x} at any later time. Thus,

τp,n(x)�Pp(N ∗o ←→N ∗x ). (30)

Since {o←→ x} can be written as {ω(o)=ω(x)= 1} ∩ {N ∗o ←→N ∗x )},
and {ω(o)=ω(x)=1} and {N ∗o ←→N ∗x )} are independent at time 0,

Pp(o←→x)=p2 Pp(N ∗o ←→N ∗x ). (31)
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From this we get

τp,n(x)�p−2 τp(x), (32)

as required.
Equation (19) is an immediate consequence of (18) and the definition

of ξ(p); it is enough to observe that

lim
||x||→∞

{
− 1
||x||

[
log τp(x)− c2 log p

]} = ξ(p)−1. (33)

4.2.2. Proof of Corllary 3.1

It follows from (17) and (18) that, for p∈ (p∗c ,1] and ||x||>1,

− log θ(p)

log (p−p∗c )
�− log θ(p,n)

log (p−p∗c )
�− log θ(p)+ log c1

log (p−p∗c )
, (34)

log τp∗c (x)

log ‖x‖ �
log τp∗c ,n(x)

log ‖x‖ �
log τp∗c (x)− c2 log p∗c

log ‖x‖ . (35)

For p∈(0, p∗c ), observing that χ(p)=Ep

∑
x∈Z2 I (o←→x)=∑

x∈Z2τp(x)

(where I (·) is the indicator function), (18) yields χ(p)�χ(p,n)�p− c2χ(p),
and therefore

− log χ(p)

log (p−p∗c )
�− log χ(p,n)

log (p−p∗c )
�− log χ(p)− c2 log p

log (p−p∗c )
. (36)

Using (34)–(36), together with (19) and the definitions of the critical
exponents, and taking the appropriate limits gives the desired results.
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